Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yang Farina, ${ }^{\text {a }}$ A. Hamid Othman, ${ }^{\text {a }}$ Ibrahim Abdul Razak, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ Seik Weng $\mathrm{Ng}^{\text {c }}$ and Ibrahim Baba ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Chemical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, ${ }^{\mathbf{b}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {c Institute of Postgraduate }}$ Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail:
h1nswen@umcsd.um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.048$
$w R$ factor $=0.112$
Data-to-parameter ratio $=20.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[N,N-bis(2-hydroxyethyl)dithiocarbamato-S,S']diphenyltin(IV)

The Sn atom in the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)_{2}\right]$, is six-coordinate in a cis- $\mathrm{C}_{2} \mathrm{SnS}_{4}$ octahedral environment.

Comment

Six-coordinate bis-chelated diaryltin compounds generally adopt a cis-octahedral geometry (Ng et al., 1987). In diphenyltin bis(diethyldithiocarbamate), (II), the chelation by one dithiocarbamate group is relatively symmetrical $[\mathrm{Sn}-\mathrm{S}=$ 2.613 (5) and 2.637 (5) A] whereas the chelation by the other is not $[\mathrm{Sn}-\mathrm{S}=2.548$ (5) and 2.790 (6) \AA]; the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle is opened up to 101.4 (6) \AA (Lindley \& Carr, 1974). The bond dimensions in the title compound, (I), are similar to those in (II); in (I), the hydroxyl groups of each dithiocarbamate ligand are hydrogen bonded to each other. Adjacent molecules are linked by hydrogen bonds into a linear chain structure. The cis geometry contrasts with the skew-trapezoidal geometry [C-$\left.\mathrm{Sn}-\mathrm{C}=139.3(2)^{\circ}\right]$ adopted by the dimethyltin homolog (Yang Farina et al., 2000).

Experimental

A solution of carbon disulfide in methanol was added to a mixture of diphenyltin dichloride and diethanolamine (1:2 molar ratio) at 277 K . The mixture was stirred to afford a pale-yellow solid, which was recrystallized from a $3: 2$ methanol-chloroform mixture to afford (I) (m.p. 402-403 K). Elemental analysis, found (calculated) for $\mathrm{C}_{22} \mathrm{H}_{30^{-}}$ $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4} \mathrm{Sn}$: C 42.7 (41.7), H 4.6 (4.8), N 4.5 (4.4), $\mathrm{Sn} 18.3 \%$ (18.7\%).

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)_{2}\right]$	$Z=2$
$M_{r}=633.41$	$D_{x}=1.596 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.0118(2) \AA$	Cell parameters from 7568
$b=12.4051(1) \AA$	reflections
$c=12.6024(2) \AA$	$\theta=1.6-29.5^{\circ}$
$\alpha=86.889(1)^{\circ}$	$\mu=1.32 \mathrm{~mm}^{-1}$
$\beta=69.575(1)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=88.293(1)^{\circ}$	Block, colorless
$V=1318.24(4) \AA^{\circ}$	$0.40 \times 0.22 \times 0.20 \mathrm{~mm}$

Received 7 December 2000 Accepted 15 December 2000 Online 22 December 2000

Data collection

Siemens CCD area-detector diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.621, T_{\text {max }}=0.779$
9804 measured reflections

6443 independent reflections
5242 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=29.5^{\circ}$
$h=-12 \rightarrow 10$
$k=-17 \rightarrow 16$
$l=-17 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.112$
$S=0.98$
6443 reflections
314 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0278 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.91 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Sn1-C1	$2.156(4)$	$\mathrm{Sn} 1-\mathrm{S} 2$	$2.624(1)$
$\mathrm{Sn} 1-\mathrm{C} 7$	$2.160(4)$	$\mathrm{Sn} 1-\mathrm{S} 3$	$2.540(1)$
$\mathrm{Sn} 1-\mathrm{S} 1$	$2.606(1)$	$\mathrm{Sn} 1-\mathrm{S} 4$	$2.827(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$104.9(1)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{S} 4$	$160.3(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 1$	$94.2(1)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 2$	$68.3(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 2$	$154.8(1)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 3$	$158.4(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 3$	$101.6(1)$	$\mathrm{S} 1-\mathrm{Sn} 1-\mathrm{S} 4$	$101.0(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{S} 4$	$83.8(1)$	$\mathrm{S} 2-\mathrm{Sn} 1-\mathrm{S} 3$	$91.8(1)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{S} 1$	$96.0(1)$	$\mathrm{S} 2-\mathrm{Sn} 1-\mathrm{S} 4$	$82.1(1)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{S} 2$	$95.2(1)$	$\mathrm{S} 3-\mathrm{Sn} 1-\mathrm{S} 4$	$66.6(1)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{S} 3$	$94.1(1)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 a \cdots \mathrm{O} 2$	$0.77(6)$	$1.90(6)$	$2.660(5)$	$167(7)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 a \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.80(5)$	$1.90(5)$	$2.692(5)$	$173(5)$
$\mathrm{O}_{3}-\mathrm{H} 3 a \cdots \mathrm{O}^{\mathrm{ii}}$	$0.76(4)$	$1.98(5)$	$2.736(5)$	$179(4)$
$\mathrm{O}^{2}-\mathrm{H} 4 a \cdots \mathrm{O} 3$	$0.80(5)$	$1.95(5)$	$2.710(5)$	$159(5)$

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.
The hydroxyl H atoms were located and refined.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
ORTEPII (Johnson, 1976) plot of the title compound with ellipsoids at the 50% probability level. H atoms are shown as circles of arbitrary radii.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Universiti Kebangsaan Malaysia and the National Science Council for R\&D, Malaysia (IRPA 09-02-02-0010, 09-02-02-0133, 09-02-02-0096, 09-02-03-0662 and 190-9609-2801), for supporting our research.

References

Yang Farina, A. A., Othman, A. H., Baba, I., Sivakumar, K., Fun, H.-K. \& Ng, S. W. (2000). Acta Cryst. C56, e84-e85.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lindley, P. F. \& Carr, P. (1974). J. Cryst. Mol. Struct. 4, 173-185.
Ng, S. W., Chen, W., Kumar Das, V. G. \& Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295-305.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

